
 
[ICRTCET-2018]  ISSN 2348 – 8034 
                                                                                                                                                                         Impact Factor- 5.070 

    (C)Global Journal Of Engineering Science And Researches 

 

484 

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES 

A STUDY ON DEVOPS WORKFLOW AUTOMATION 
Sivakumar D

*1
, Sujay M

2
, Syed Nabeeq

3
 & Varshitha R

4
 

*1,2,3&4
Department Of Computer Science, Rajarajeswari College Of Engineering, Bangalore, India 

 
ABSTRACT 

Companies have benefited by adopting agile development methodologies and as part of such methodology have seen 

benefits by automating and adopting continuous integration principles in their software lifecycle. Such practices 

have improved the efficiency of development teams. With the efflux of time, companies have realized that the 

Continuous integration alone will not help to make the delivery lifecycle efficient and therefore will not drive 

organization efficiency. Software development life cycle involves several steps namely - the development cycle 

(requirements to design to coding and unit testing), testing cycle (deployment, system integration testing and user 

testing) and use cycle (deployment, monitoring and application availability). Continuous Integration did not apply 

automation testing cycle and use cycle. DevOps automates development cycle, testing cycle and use cycle. DevOps 

is about automating the entire software delivery life cycle. DevOps is a software engineering philosophy and 

practice that aims at merging software development (Dev) and software operation (Ops). Automation is brought 

about by implementing various tools at different stages of software development process. Companies that rehearse 

DevOps have reported important profits like lesser time to market, enhanced customer satisfaction, amplified 

product quality and increased ability to build the correct product by rapid experimentation. In this paper, we aim to 

understand all aspects of DevOps automation steps of Software Development Lifecycle. Further we will review 
various tool and technology combinations in aspect of DevOps. 

 

Keywords: Agile, Software development lifecycle, Continuous Integration, Automation. 

 

I. INTRODUCTION                   
 

Many software companies are involved in production of application software. When the companies are responsible 

for large distributed and complex applications, the operational complexity grows at a quick rate. While developing 

an application many questions arise regarding how we deploy the applications, how we monitor services, how we 
monitor the performance of the application, how alerts and remedies are given when there is a problem [1]. 

 

DevOps concentrates on combining the power of developers and operations. The focus on this collaboration enables 

a new way to manage the complexity of these applications. [2] DevOps is the practice of operations and 

development engineers participating together in the entire service lifecycle of an application, starting from design to 

development to production support. 

 

DevOps has become a trending technology in the modernized software industry. Before DevOps, Agile 

methodology and principles had created a similar hype in bringing a change to the methods of software 

development. This had led the software industries to spend huge money in giving a new form to the organization’s 

structure, implementing and deploying new solutions, and hiring employees who self-proclaimed to be experts.[4] 

Few of the main objectives of agile principles like delivering small and iterative working solutions seemed to be 

forgotten. The methodologies were implemented only during the phases of development cycle which led to the 

creation of backlogs in the operation team, because these teams failed to release the products fast enough by being 

unable to cope up with the pace of development teams. 

 

Limitations with agile methodologies emerged when development teams relied on false assumptions such as 
coherent system design with iteration, paying technical debts at later stages, assuming constant refactoring to be the 

best practice, systems are flexible and adaptable to incorporate changes made by agile principles. [5]Such 

assumptions failed to improve the productivity and ended up the development team to practice microcosm planning, 



 
[ICRTCET-2018]  ISSN 2348 – 8034 
                                                                                                                                                                         Impact Factor- 5.070 

    (C)Global Journal Of Engineering Science And Researches 

 

485 

development and testing activities as short phases or sequences. The ops team was left behind with fast piling up of 

deployments to be released and the customers were left unsatisfied and did not receive what they demanded. 

 

This led to the evolution of DevOps, a new and improvised version of agile methodology including the Dev and Ops 

teams to enable to service with quality and speed. Automation is brought about by implementing various tools at 

different stages of software development process. Companies that rehearse DevOps have reported important profits 

like lesser time to market, enhanced customer satisfaction, amplified product quality and increased ability to build 

the correct product by rapid experimentation. 

 

II. LITERATURE REVIEW 
 

The paper portrays the communication practices from a distributed agile team which comprises of the two teams that 

is the development and operational team based on communication challenges which may include geographical, 

socio-cultural, and temporal distance and many other strategies. A large multinational organization is taken as an 

example and a study is conducted on how two way communication takes place with respect to distributed DevOps. 

Since DevOps is all about joint effort to better serve the client, it is vital that the two teams are very well aligned and 

adjusted on their communication practices. [6] 

 

The paper [7] portrays a net based system (DevOpsEnvy) which is acquainted to support the administration and 
observing of student teams involved in DevOps. By coordinating a few popular open source tools, this framework 

gives students with facilities such as group management, project status observing and student performance data 

enquiry and so on. 

 

The paper examines the fit of DevOps for regulated medical device software development. The connection of the 

DevOps approach and regulated software development of medical devices is studied. The procedure, strategy and 

the environment of software creation and programming must be recorded and documented. This is possible by the 

DevOps tools, for example, GIT and Jenkins [8] 

 

The target of the exploration is to examine whether quality of the software or the product gets enhanced when 

practicing DevOps in programming and software companies [9]. This examination has shown the elements that are 

to be considered to improve the quality of the software and how organisations can rehearse DevOps. Information has 

been accumulated through conducting web surveys and meets with DevOps specialists in software development 

industry. 

 

The paper acquaints the DevOps approach with security affirmation in multi-cloud applications which 

empowers early feedback of the application security status to the development phase keeping in mind the end 

goal to take restorative activities as quickly as time permits at whatever point they are required. The 
assessment of DevOps and dynamic security assurance demonstrated that the proposed strategies and tools 

lessen the security defects in the application usage and guarantee the multi-cloud application consistence to 

information protection necessities (including information integrity and privacy). 

 

 

 

 

 

 

 

 

 

 

 

 



 
[ICRTCET-2018]  ISSN 2348 – 8034 
                                                                                                                                                                         Impact Factor- 5.070 

    (C)Global Journal Of Engineering Science And Researches 

 

486 

III. DEVOPS WORKFLOW 

 

 
Figure 1: Block diagram of DevOps workflow 

 
Phases of DevOps: 

Figure 1 shows the different phases of DevOps. The various phases includes : 

 Continuous Development 

 Continuous Integration 

 Continuous Testing 

 Continuous Deployment 

 Continuous Monitoring 

 

Continuous Development 
This phase involves planning and coding of application. The vision of the project is decided into the planning phase, 

and when they start writing the code, it’s referred to as coding phase. Developers write the code in any language and 

once they commit the code, it goes to source code repository where we can manage the codes written by developers. 

This is nothing but a version control, this process is automated using tools such as GIT, SVN and JIRA. 

 

Versions are maintained in a central repository so that all the developers can collaborate on the ‘latest committed’ 

code, and even operations can have access to that same code when they plan to make a release. 

 
Whenever a mishap happens during a release, or even if there are lots of bugs in the code (faulty feature), there is 

nothing to worry. Ops can quickly rollback the deployed code and thus revert back to the previous stable state. 

 



 
[ICRTCET-2018]  ISSN 2348 – 8034 
                                                                                                                                                                         Impact Factor- 5.070 

    (C)Global Journal Of Engineering Science And Researches 

 

487 

Continuous Integration 
Continuous Integration (CI) plays a major role during the first release. It helps massively to integrate the CI tools 

with configuration management tools for deployment. The most popular CI tool in the market is Jenkins, other 

popular tools are bamboo and Hudson. 

 

This tool (Jenkins) helps in the automation of tools falling under other DevOps lifecycle phases. It supports large 

number of plugins which can be used to integrate with other Continuous Development tools or Continuous Testing 

tools or Continuous Deployment tools or even Continuous Monitoring tools. 

 

When integrated with Git/ SVN, Jenkins schedule jobs by pulling the code from shared repositories automatically 

and make it ready for builds and testing (Continuous Development). Jenkins can build jobs either at scheduled times 

of day or whenever a commit is pushed to the central repository. Maven is used for building the code in Jenkins. 

 

POM is a representation for Project Object Model. It is central unit of work in Maven. It is an XML file that exists 

in the base directory of the project in the name pom.xml. The POM comprises of data related to the project and 

various formation detail used by Maven to form the project. 
 

POM also encompasses the objectives and plugins. While accomplishing a task or goal, Maven searches for the 

POM in the present directory. It goes through the POM, obtainss the required configuration information and data, 

and then implements the goal. 

 

Continuous Testing 
When integrated with testing tools like Selenium, we can achieve Continuous Testing. The developed code can be 

built using tools like Maven/ Ant/ Gradle. When the code is built, then Selenium can automate the execution of 

that code by creating a suite of test cases and executing the test cases one after the other. 

 

The role of Jenkins/ Hudson/ Bamboo here would be to schedule/ automate. Selenium to automate test case 

execution. 

 

Continuous Deployment 
This phase has two parts- Configuration Management and Containerization 

 

(a) Configuration management 
It is the act of releasing deployments, scheduling updates keeping the configurations consistent across all the 

servers. Configuration management can be achieved with the help of Infrastructure as code (IAC). 

 

With this approach, infrastructure can be shared, tested and version controlled. In IAC we write the code for 

infrastructure in one central location and it can be shared with any number of nodes. If we want to update software 

then we write the code in one location and same will be replicated to 100’s of nodes. Advantage of this is, since 

everything is well documented in central location rolling back to previous version is not time consuming, 

configuring large infrastructure has been easy. 

 

Most  Popular  Configuration  Management  tools  are: 

Puppet, Chef, Ansible, and SaltStack. 

 

(b) Containerization 
It comprises of the whole run time environment, an application, all its reliance, libraries and other binaries, and 

configuration files needed to run it, bundled into a single package. If we need to run an application for shorter 

duration in production environment (prod), we can create a container in prod and run the application in that 

container. 
 

Most popular containerization tool is Docker. 



 
[ICRTCET-2018]  ISSN 2348 – 8034 
                                                                                                                                                                         Impact Factor- 5.070 

    (C)Global Journal Of Engineering Science And Researches 

 

488 

Continuous Monitoring 
It ensures that application is performing as desired and the environment is stable. It quickly determines when 

service is unavailable and understands the underlying causes. Tools of this phase continuously record the system’s 

health and alert administrators when they find out problems so that the administrators can take necessary 

corrective actions. 

 

Nagios is a well-known open source tool for monitoring IT infrastructures such as end-user stations, IT services, 

and active network components. Other popular monitoring tools are: Splunk, ELK Stack, Sensu and NewRelic. 

 

IV. RESULTS AND DISCUSSION 
 

We will be depicting the results of Continuous Integration which is brought about by using the platform of the 

DevOps tool called Jenkins. It is collaborated with other tools like Git and Maven. Git contains the source code of 

the application. Maven is used to build the code of the application. 

 

We have considered a web application called ‘Game of Life’ to show the Continuous Integration phase of DevOps. 

 

An account needs to be created in Jenkins to start using it. Later using the account details we can log in and start the 

kind of project we wish to build as shown in figure 2. 
 

 
Figure 2: Logging in to Jenkins 

 

The specification of the path of source code in GitHub while configuring the build of the desired project is shown in 

figure 3. 

 

 
Figure 3: Specification of source code path 

 

We have to specify the build schedule that is, for what duration the source code has to be checked for any new 

modifications. The path of the application’s code must be specified. Whenever there is modification in the source 

code in GitHub, the code is automatically checked out to Jenkins and build process will begin. 

 



 
[ICRTCET-2018]  ISSN 2348 – 8034 
                                                                                                                                                                         Impact Factor- 5.070 

    (C)Global Journal Of Engineering Science And Researches 

 

489 

The status of the build can be determined at the end of the build. If the project is built successfully it shows “Build 

Success” with a color depiction of blue color else shows “Build Failure” with a color depiction of red color. A 

snapshot of the console output in which a build of the code of a web application is initiated is shown in figure 4. 

 

 
Figure 4: An attempt to build the Application 

 
If the code of the application satisfies all the necessary criteria and contains all the requested files to build then it is 

shown with the color blue and a message in the console output as ‘Build Success’. This is shown in the figure 5. 

 

 
Figure 5: Build of the application is successful 

 

Incase if the application criteria does not satisfy the given requirements, for example if requested version 

of Maven does not exist, then it is indicated with red color and a message in the console output as 

‘Failure’. This is shown in the figure6. 

 
Figure 6: Build of the application is unsuccessful 

 

V. CONCLUSION 
 

DevOps is neither a job nor a thing. It is a philosophical way to solve a problem. In a software industry where 

functional boundaries are marked and developed rapidly, the way of working with DevOps unites cross functional 



 
[ICRTCET-2018]  ISSN 2348 – 8034 
                                                                                                                                                                         Impact Factor- 5.070 

    (C)Global Journal Of Engineering Science And Researches 

 

490 

teams that is the development team and the operation team, which are reliant on each other for mutual success. With 

the implementation of DevOps workflow, there is a steep learning curve involved in getting internal teams 

productive. 

 

The various limitations include, good domain knowledge is required for automation projects involving serious 

integration work. It is hard to hire good DevOps engineers. Most of them are system admins and operators who are 

unable to code or who may not understand infrastructure and systems, depending on their background. 
 

REFERENCES 
1. Hui Kang, ” Container and Microservice Driven Design for Cloud Infrastructure DevOps”, in 2016 IEEE 

International Conference on Cloud Engineering. 978-1-5090-1961-8/16 $31.00 © 2016 IEEE, pp. 202-211. 

2. Manuel Peuster, “Profile Your Chains, Not Functions: Automated   Network  Service   Profiling   in   DevOps 

Environments”, in 2017 IEEE Conference on Network Function Virtualization and Software Defined Networks 

(NFV-SDN). 978-1-5386-3285-7/17/$31.00 ©2017 IEEE, pp. 1-6. 

3. Elisabetta Di Nitto, “DevOps: Introducing Infrastructure-as-Code”, in 2017 IEEE/ACM 39th International 

Conference on Software Engineering Companion (ICSE-C). 978-1-5386-1589-8/17 $31.00 © 2017 IEEE, pp. 497-

498. 

4. Alberto Belalcázar,“Incorporation of Good Practices in the Development and Deployment of Applications 

through Alignment of ITIL and Devops”, in 2017 International Conference on Information Systems and Computer 

Science (INCISCOS). 978-1-5386-2644-3/17 $31.00 © 2017 IEEE, pp. 224-230. 

5. Cornel Barna, “Delivering Elastic Containerized Cloud Applications to Enable DevOps”, in 2017 IEEE/ACM 

12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS) 978-1-

5386-1550-8/17 $31.00 © 2017 IEEE, pp. 65-75. 
6. Elisa Diel, ”Communication Challenges and Strategies in Distributed DevOps”, in proceedings of the 11th 

International Conference on Global Software Engineering. 2329-6313/16 $31.00 © 2016 IEEE, pp. 24-28. 

7. Guoping Rong, ”DevOpsEnvy: An Education Support System for DevOps”, in proceedings of the 30th IEEE 

Conference on Software Engineering Education and Training. 2377-570X/17 $31.00 © 2017 IEEE, pp. 37-46. 

8. Teemu Laukkarinen, ”DevOps in Regulated Software Development: Case Medical Devices”, in IEEE/ACM 39th  

International Conference on Software Engineering: New Ideas and Emerging Technologies Result. 978-1-5386-

2675-7/17 $31.00 © 2017 IEEE, pp. 15-18. 

9. Pulasthi Perera, ”Improve Software Quality through Practicing DevOps”, in International Conference on 

Advances in ICT for Emerging Regions (ICTer): 013 – 018. 978-1-5386-2444-9/17/$31.00 © 2017 IEEE, pp. 1-6 

10. Erkuden Rios, ” Dynamic Security Assurance in Multi-Cloud DevOps”, in 3rd IEEE Workshop on Security and 

Privacy in the Cloud (SPC 2017). 978-1-5386-0683-4/17/$31.00 ©2017 IEEE, pp. 467-475. 

11. Robert Heinrich, “Architectural Runtime Modelling and Visualization for Quality-Aware DevOps in Cloud 

Applications”, in 2017 IEEE International Conference on Software Architecture Workshops (ICSAW). 978-1-

5090-4793-2/17 $31.00 © 2017 IEEE, pp. 199-201. 

12. Guoping Rong, “CMMI Guided Process Improvement for DevOps Projects: An Exploratory Case Study”, in 

2016 IEEE/ACM International Conference on Software and System Processes(ICSSP). c 2016 ACM. ISBN 978-1-

4503- 4188-2/16/05. . . $15.00, pp. 76-85. 
13. Tsuneo  Nakanishi,  “Dynamic  SPL  and  Derivative Development with Uncertainty Management for DevOps”, 

in 2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI). 978-1-4673-8985-3/16$31.00 

© 2016 IEEE, pp. 244-249. 

 

 


